Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus.

نویسندگان

  • B Friedrich
  • C Hogrefe
  • H G Schlegel
چکیده

Mutants defective in chemolithoautotrophic growth (Aut-) have been isolated from Alcaligenes eutrophus strains H16, N9A, G27, and TF93. Spontaneous Aut- mutants were obtained only with strain TF93. Mutants of the other strains were selected after conventional mutagenesis or treatment with mitomycin. Most of the mutants, including the spontaneous Aut- strains, lacked hydrogenase activity (Hox-) but possessed the ability to fix carbon dioxide (Cfx+). Agar mating of A. eutrophus H16 with Hox- mutants of the various strains resulted in transconjugants which had recovered the ability to grow autotrophically and to express activity of hydrogenase as examined by enzymatic and immunochemical analysis. Transfer of hydrogen-oxidizing ability occurred in the absence of a mobilizing plasmid such as Rp4. The transfer frequency was particularly high (ca. 10(-2) per donor) when the spontaneous Hox- mutants of strain TF93 were used as recipients. These strains proved to be plasmid free, whereas donors, transconjugants, and the mutagen-treated Hox- mutants contained a large plasmid (molecular weight, 270 +/- 10 X 10(6) revealed by agarose gel electrophoresis. The results allow the conclusion that A. eutrophus H16 harbors a self-transmissible plasmid designated pHG1, which carries information for hydrogen-oxidizing ability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen metabolism in aerobic hydrogen-oxidizing bacteria.

A survey on organisms able to use molecular hydrogen as electron donor in the energy-yielding process is presented. In the group of the aerobic hydrogen-oxidizing bacteria so far two types of hydrogenases have been encountered, a NAD-reducing, soluble enzyme (H2 : NAD oxidoreductase) and a membrane-bound enzyme unable to reduce pyridine nucleotides. With respect to the distribution of both type...

متن کامل

Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5.

Alcaligenes eutrophus A5 catabolizes biphenyl to CO2 via benzoate and 4-chlorobiphenyl to 4-chlorobenzoate. In curing and conjugation experiments, the A5 endogenous 51-kb IncP1 plasmid pSS50 was found to be dispensable for biphenyl and 4-chlorobiphenyl catabolism. Transfer of the biphenyl- and 4-chlorobiphenyl-degrading phenotype by means of pSS50 was observed at a frequency of 10(-5) per trans...

متن کامل

Role of hydrogen in the activation and regulation of hydrogen oxidation by the soluble hydrogenase from Alcaligenes eutrophus H16.

The activation kinetics of the H2-oxidizing activity of the soluble hydrogenase from Alcaligenes eutrophus H16 were investigated. Activation with Na2S2O4 plus 101 kPa H2 resulted in a rapid increase in activity over 1 h and constant activity after 3 h incubation. Less-stable activations were achieved if enzyme was incubated with Na2S2O4 under 1 kPa H2 or 101 kPa N2. The enzyme could also be par...

متن کامل

Cloning and expression of the levanase gene in Alcaligenes eutrophus H16 enables the strain to hydrolyze sucrose

Genetic engineering methods were used to enhance the substrate spectrum of Alcaligenes eutrophus H16, a poly-fl-hydroxybutyric acid (PHB) producer. Using parts of the vector pMMB33 and a 2.5 kb DNA fragment of the Bacillus subtilis chromosome a plasmid was constructed bearing the gene for levanase, an enzyme able to hydrolyze various saccharides. After transfer of the levanase gene by triparent...

متن کامل

Denitrification by Alcaligenes eutrophus is plasmid dependent.

Curing of the hydrogenase-specifying megaplasmid pHG indigenous to strains of the facultative lithoautotrophic bacterium Alcaligenes eutrophus was correlated with a loss of denitrifying ability (Nitd). The retransfer of plasmid pHG1 reconstituted the Nitd phenotype. Plasmid-free mutants were still capable of converting some nitrate to nitrite, but they did not metabolize nitrite under anaerobic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 147 1  شماره 

صفحات  -

تاریخ انتشار 1981